
Computational Plant (Cplant™)

Ron Brightwell
Sandia National Labs

Scalable Systems Integration Department
bright@cs.sandia.gov



Outline

• Cplant™ Hardware
• Cplant™ Runtime System
• Application Peformance



System Software R&D at Sandia

• Intel Paragon
– 1890 compute nodes
– 3680 i860 cpu’s
– 143/184 GFLOPS
– 175 MB/sec network

• SUNMOS lightweight kernel
– High performance compute node 

OS for distributed memory MPP’s
– Deliver as much performance as 

possible to apps
– Small footprint 
– Started in January 1991 on the

nCUBE-2 to explore new message 
passing schemes and high-
performance I/O

– Ported to Intel Paragon in Spring 
of 1993



System Software R&D (cont’d)

• Intel ASCI Red
– 4576 compute nodes
– 9472 Pentium II CPU’s
– 2.38/3.21 TFLOPS
– 400 MB/sec network

• Cougar lightweight kernel
– Multiprocess support
– Modularized (QK, PCT)
– Developed on nCUBE-2 in 1993
– Ported to Intel Paragon in 1995
– Ported to Intel TFLOPS in 1996 

(Cougar)
– Portals 1.0

• User/Kernel managed buffers
– Portals 2.0

• Avoid buffering and memory 
copies



Why Cplant™?

• Modeling and simulation, essential to stockpile 
stewardship, require significant computing power

• Commercial supercomputers seemed to be a 
dying breed

• Pooling of large SMP’s is expensive and more 
complex

• Commodity PC market is closing the performance 
gap

• Web services and e-commerce are driving high-
performance interconnect technology



What is Cplant™?

• Cplant™ is a concept
– Provide computational capacity at low cost
– Build MPPs from commodity components 
– Follow ASCI Red model and architecture

• Cplant™ is an overall effort:
– Multiple computing systems in NM & CA 
– Multiple projects 

• Portals 3.x message passing (with UNM and others)
• Cluster Infrastructure Toolkit (with HPTi)
• System integration & test
• Operations & management

• Cplant™ is a software package
– Available under the GNU LGPL



Cplant™ Approach

• Hybrid approach combining commodity cluster 
technology with MPP technology

• Emulate the Intel ASCI Red environment
– Partition model (functional decomposition)
– Space sharing (reduce turnaround time)
– Scalable services (allocator, loader, launcher)
– Complete compute node resource dedication

• Use Existing Software when possible
– Red Hat distribution, Linux/Alpha
– Software developed for ASCI Red



Cplant™ Systems (SNL/NM)



Antarctica

• 1792+ Compaq DS10L Slates
– 466MHz EV6, 256 MB RAM

• 590 Compaq XP1000s
– 500 MHz EV6, 256 MB RAM

• Myrinet 33MHz 64bit LANai 7.x 
and 9.x

• Myrinet Mesh64 switches
• Classified, unclassified, open, 

and development network heads



256 Nodes

128 paths

Antarctica’s Center Can Connect to Four Different Heads

24 Service
& I/O Nodes

24 Service
& I/O Nodes

256
Nodes

256
Nodes

16 Service
& I/O Nodes

256 Nodes

256 Nodes

256 Nodes
256 Nodes

256 Nodes

128 paths
128 paths

128 paths

128 paths

128 paths

32 paths

256
Nodes

128
Nodes

16 Service
& I/O Nodes

Unclassified

Open

Classified
Development



Net I/O

Service

Users

File I/OCompute

/home

Conceptual Partition Model



Cplant™ Software

Portals

MPI Library

Cluster Services

Hardware

IP

Parallel I/O
Library

Distributed Services Library

yod PCT bebopd pingd

Applications Portable Batch System

Linux

Runtime Environment

PERL

Device Database

Add Delete Find Power
Role Database

Discover utility

Hardware Configuration Software

PERL

Power control

Boot node

Boot scalable unit

Boot virtual machine

Remote distribution

Update SSS0

Update virtual machine

Management Software



Runtime System Components

• Yod (xnc++)
– Service node parallel job launcher

• Yod2
– Job launcher for dynamic process creation
– Not yet deployed in production

• Bebopd (Better Engineered Bag Of PCs Daemon)
– Compute node allocator

• PCT (Process Control Thread)
– Compute node daemon

• pingd/showmesh
– Compute node status tools

• PBS
– Batch scheduler



Runtime System (cont’d)

• Yod
– Contacts compute node allocator
– Launches the application into the compute partition
– Redirects all application I/O (stdio, file I/O)
– Makes any filesystem visible in the service partition 

visible to the application
– Redirects any UNIX signals to compute node processes
– Allows user to choose specific compute nodes
– Can launch multiple different binaries
– Displays launch timing information
– Same basic interface as SUNMOS and Cougar



Runtime System (cont’d)

• PCT
– Contacts bebopd to join compute partition
– Forms a spanning tree with other PCT’s to fan out 

the executable, shell environment, signals, etc.
– Puts executable in a RAM disk
– fork()’s, exec()’s, and monitors status of child 

process
– Cleans up after parallel job



Runtime System (cont’d)

• Bebopd
– Accepts requests from PCT’s to join the compute 

partition
– Accepts requests from yod for compute nodes
– Accepts requests from pingd for status of compute 

nodes
– Coordinates scheduling with PBS server
– Allows for multiple compute partitions



Runtime System (cont’d)

• Pingd
– Displays list of available compute nodes
– Displays list of compute nodes in use
– Displays owner, elapsed time of jobs
– Allows users to kill their jobs
– Allows administrators to kill jobs and free up specific 

nodes
– Allows administrators to remove nodes from the 

compute partition
• Showmesh

– Massages pingd output into TFLOPS-like showmesh



Runtime System (concl’d)

• PBS
– Enhanced version of OpenPBS
– Added non-blocking I/O for fault tolerance
– PBS Moms and Server only run in the service 

partition
– Added new attribute – “nodes”
– Contacts bebopd to get a list of nodes to give to 

yod



User-Level Software

• Redirected standard C and I/O libraries
– Catch some system calls and let yod handle them
– Uses a RPC library over Portals 3.0

• Distributed services library
– Used by for communication between runtime system 

components (yod, pct, bebopd)
– Implemented over Portals 3.0

• Puma library
– Implements dclock() and others for compatibility with 

Puma
• Startup code

– Initializes the parallel environment for a process



User-Level Software (cont’d)

• MPI library
– Portals 3.x device layer for MPICH 1.2.0
– Implements peer communication only

• Dynamic allocation library
– New code to support MPI-2 dynamic process creation 

functionality
– Not yet deployed in production

• Job library
– Allows for user-implemented job launcher

• Portals 3.x library
– Basic peer communication functions



Kernel-Level Software

• Minor patches to Linux for memory locking and memory mapping
• Address cache module (unused)

– Caches virtual-to-physical mappings for Portals 3.x
• cTask module

– Runtime system mappings for processes
– Process cleanup

• Portals 3.x module
– Implements Portals 3.x functionality

• RTS/CTS module
– Myrinet device driver
– Reliability and flow control

• MyrIP module
– Provides IP packets over Myrinet



Device-Level Software

• Myrinet Control Program
– Firmware running on LANai processor on NIC
– Packet engine



Cplant™ Can Launch 1010-Node
Jobs in Seconds



Design Issues

• Two ways to move executable to compute nodes
– Pull executable to compute nodes

• Requires some intelligence in the filesystem
• Filesystems can’t handle N-to-1 reads

– Push executable to compute nodes
• No filesystem dependency
• Easier to implement

• Need to start processes in parallel
• Support for other programming models

– Job launch should not be specific to the 
programming model

• Fault detection



Design Issues (cont’d)

• Bebopd is a single point of failure
– No new jobs runs if bebopd goes away
– Distributed bebopd

• Failure only affects part of the cluster
• Haven’t needed to do it yet

– Bebopd checkpoints the state of the machine and 
can be restarted



Emphasis on Reliability

• More nodes, more users, more applications lead to more 
stress on the system

• Myrinet issues
– GM mapper limitations

• Each new cluster exceeded the number of nodes the
mapper could handle

• Entire cluster must be up and running
– Non-deadlock-free routes

• Code for routing algorithm gave only shortest path routes
– Reliability

• Bit error rate orders of magnitude higher than advertised
• Storms of multi-bit errors
• Mis-routed packets, corrupted headers, corrupted data



Emphasis on Reliability (cont’d)

• Runtime system issues
– Most problems related to message passing

• Runtime utilities must recover from network errors
– Problems show up as

• Failure to start parallel job
• Utilities become uncommunicative
• Compute nodes become unreachable
• Allocator becomes unresponsive



Addressing Message
Passing Reliability and Robustness

• Added error detection/correction to Myrinet driver
• Implemented Myrinet switch monitoring software
• Implemented switch error visualization tool
• Fixes to the network reliability protocol

– Fixes to message sequencing bug
– Propagation of failures up the network stack

• Portals
– Fixes to event ordering semantics
– Defined transport failure semantics
– Enhancement for more scalable buffering of MPI 

unexpected messages



Switch Error Visualization Tool



Addressing Runtime
System Reliability and Robustness

• Stripped-down load protocol
– Enhancement to avoid non-scalable operations
– Nodes automatically pruned during load failures

• Enhancements to compute node allocator
– Single point of failure
– Throttling of messages from compute nodes
– Allocator now stateful

• Changes to allow centralized runtime logging
• Issue tracking system



Cplant™ Robustness



Salinas on Cplant™



ASCI/Red Hardware

• 4640 compute nodes
– Dual 333 MHz Pentium II 

Xeons
– 256 MB RAM

• 400 MB/sec bi-directional 
network links

• 38x32x2 mesh topology
• Red/Black switchable
• First machine to 

demonstrate 1+ TFLOPS
• 2.38/3.21 TFLOPS
• Deployed in 1997



ASCI/Red Compute Node Software

• Puma lightweight kernel
– Follow-on to Sandia/UNM Operating System 

(SUNMOS)
– Developed for 1024-node nCUBE-2 in 1993 by 

Sandia/UNM
– Ported to 1800-node Intel Paragon in 1995 by 

Sandia/UNM
– Ported to Intel ASCI/Red in 1996 by Intel/Sandia
– Productized as “Cougar” by Intel



ASCI/Red Software (cont’d)

• Puma/Cougar
– Space-shared model
– Exposes all resources to applications
– Consumes less than 1% of compute node memory
– Four different execution modes for managing dual 

processors
– Portals 2.0

• High-performance message passing
• Avoid buffering and memory copies
• Supports multiple user-level libraries (MPI, Intel N/X, 

Vertex, etc.)



Salinas

• General-purpose, finite element structural 
dynamics code for massively parallel computers

• Currently offers
– Static analysis
– Direct implicit transient analysis
– Eigenvalue analysis for computing modal 

response, modal superposition-based frequency 
response, and transient response



Salinas (cont’d)

• Includes extensive library of
– Standard one-, two-, and three-dimensional 

elements
– Nodal and element loading
– Multi-point constraints



Salinas (cont’d)

• Solves systems of equations using an iterative multilevel 
solver specifically designed to exploit massively parallel 
machines
– Finite Element Tearing and Interconnect (FETI)
– Mature

• Versions used in commercial finite element packages
– Scalable

• As the number of unknowns increases and the number of 
unknowns per processor stays constant, time to solution 
stays constant 

– Accurate
• Convergence rate does not deteriorate as the iterates 

converge



Salinas Sample Problem

• Small problem size
– Only bout 3 MB per node

• Stresses the system more than larger problems
– Ratio of computation to communication is larger
– Higher frequency of message passing

• Good indicator of scaling efficiency for larger problems
• Dedicated time on Cplant™
• Non-dedicated time on ASCI/Red using a single processor 

per node
• Average of five runs



Salinas is 2.5x Faster on Cplant™
at 1000 nodes



I/O Time Is Not Scaling As Well on Cplant™



Scaling Issue on Cplant™

• MPI resource exhaustion at several hundred nodes
• “Too many MPI unexpected messages”

– AKA “Not enough posted receives”
• Short message protocol for MPI is eager
• Unexpected messages are buffered at the receiver
• Initial MPI implementation set aside 1024 8 KB buffers
• A single message of any size consumes a buffer

• MPI_Gather() in MPICH 1.2.0 is implemented via N-to-1 
algorithm

• Quick workaround was to add an MPI_Barrier() to make 
MPI_Gather() synchronous



Previous Strategy for Unexpected Messages

Match none

Match any

Match any

short,unlink

short,unlink

short,unlink

0, trunc, ACK

Pre-posted

Mark

Event 
Queue

buffer

buffer

buffer



Limitations

• Limited number of unexpected messages allowed 
due to kernel (or NIC) memory resources

• Any size unexpected message consumes an 
unexpected message slot, even zero-length

• Unexpected message limit based on count rather 
than size

• Consumes a significant amount of Portals 
resources
– 1025 memory descriptors



Current Strategy

Match none

Match any

Match any

short, ACK

short, ACK

short, ACK

0, truncate, ACK

Pre-posted receives

Marker

Event 
Queue

buffer

buffer

buffer

Match any

Match any



Advantages

• More efficient use of unexpected message 
memory
– A zero-length message doesn’t consume any 

memory
– Limitation becomes space rather than count

• Uses only a few Portals resources
– Four memory descriptors versus 1025

• More efficient for NIC-based implementations



As for Salinas…

• Change to MPI library had minimal effect on 
performance

• Overhead of extra MPI_Barrier() operation to 
synchronize MPI_Gather() operation is negligible



Salinas Summary

• A commodity Linux cluster is able to sustain 
competitive performance for a real-world code 
out to 1000 nodes

• Cplant™ is a viable, reliable, large-scale platform
• Issues with network resources become important 

as applications scale



Ongoing Runtime System Work

• Intelligent allocator
– Try to account for network topology or routes
– Ideal allocator would allocate contiguous nodes
– Measure impact on load time

• Dynamic process creation
– Support for MPI-2 dynamic process creation functions

• Multiprocessor support
– Current environment supports one process per node

• Multithreaded support
– Support using pthreads in an application process

• Library API for runtime system interaction
– Host library for custom allocator



Licensing

• Cplant™ source code released under the GNU 
LGPL
– 1400+ downloads since April 19, 2001

• Cplant™ source code licensed to Unlimited Scale, 
Inc.
– Intended to be base technology for initial product
– Sandia has a small equity in USI



Acknowledgments

• Salinas
– Manoj Bhardwaj, Garth Reese (SNL)

• Portals
– Barney Maccabe (University of New Mexico)
– Peter Braam (Cluster File Systems, Inc.)



http://www.cs.sandia.gov/cplant

http://sf.net/project/sandiaportals


